Zero-puntuko energia

Zero-puntuko energia (ZPE) sistema mekaniko kuantiko batek izan dezakeen energia txikiena da. Mekanika klasikoan ez bezala, sistema kuantikoek etengabe fluktuatzen dute energia-egoerarik baxuenean Heisenberg-en ziurgabetasun printzipioak deskribatzen duen moduan.[1] Atomoez eta molekulez gain, hutseko espazio hutsak propietate horiek ere baditu.  Kuantikaren eremu-teoriaren arabera, unibertsoa ez da partikula isolatuen multzotzat hartu behar, baizik eta eremu jarraitu eta fluktuatzailetzat:  materia eremuak, zeinen kuantuak fermioiak diren (hau da, leptoiak eta quarkak); eta indar-eremuak, zeinen kuantuak bosoiak diren  (adibidez, fotoiak eta gluoiak). Eremu horiek guztiek zero-puntuko energia dute.[2] Zero-puntuko eremu fluktuatzaile hauek eterraren birsartzea ekar dezakete, sistema batzuek energia hori badagoela hauteman baitezakete. Hala ere, eter hori, Lorentz inbariantea izango bada, ezin da ingurune fisiko gisa ulertu, Einsteinen erlatibitate bereziaren teoriarekin kontraesanik ez egoteko.

Richard Phillips Feynman, XX. mendeko estatubatuar fisikaririk garrantzitsuenetariko bat.


Gaur egun, fisikak ez du zero-puntuko energia ulertzeko eredu teoriko osaturik; bereziki, teorizatutako eta behatutako huts-energiaren arteko desadostasuna eztabaida handien iturri da. Richard Feynman eta John Wheeler fisikariek hutsaren zero-puntuko erradiazioa energia nuklearra baino magnitude ordena handiagoa zela kalkulatu zuten, bonbilla bakar batek munduko ozeano guztiak irakiteko adina energia baitzuen.[3] Hala ere, Einstein-en erlatibitate orokorraren teoriaren arabera, horrelako energiak grabitatuko luke. Ordea, unibertsoaren hedapenaren, energia ilunaren eta Casimir efektuaren ebidentzia esperimentalek energia hori oso ahula dela erakusten dute. Gai honi aurre egiten saiatzen den proposamen ezagun bat  fermioi eremuak zero-puntuko energia negatiboa duela esatean datza, bosoi eremuak zero-puntuko energia positiboa duen bitartean. Beraz, teoria horrek dio energia horiek nolabait elkar baliogabetzen dutela. Ideia hori egia izango litzateke supersimetria naturaren simetria zehatza izango balitz; hala ere, CERNeko LHCk orain arte ez du horren frogapenik aurkitu. Gainera, jakina da supersimetria baliagarria bada, gehienez simetria hautsia dela, alegia, bakarrik da baliagarria oso energia altuetan, eta inork ezin izan duela teoriarik erakutsi non zero-puntuko ezeztapenak gertatzen diren energia baxuko unibertsoan eta inork ezin izan duela teoriarik atera non  zero-puntuko ezeztapenak gaur egun dugun energia baxuko unibertsoan azal daitezkeen. Desadostasun horri konstante kosmologikoaren arazoa deritzo eta fisikako argitu gabeko misterio handienetako bat da. Fisikari askoren ustez, "natura guztiz ulertzeko giltza hutsean dago".[4]

  1. The Philosophy of vacuum. Clarendon Press 1991 ISBN 0-19-824449-5. PMC 22451446. (Noiz kontsultatua: 2021-11-09).
  2. Milonni, Peter W.. (1994). The quantum vacuum : an introduction to quantum electrodynamics. ISBN 0-12-498080-5. PMC 28709624. (Noiz kontsultatua: 2021-11-09).
  3. (Ingelesez) Pilkington, Mark. (2003-07-17). «Zero point energy» the Guardian (Noiz kontsultatua: 2021-11-04).
  4. Davies, P. C. W.. (1984). Superforce : the search for a grand unified theory of nature. Simon and Schuster ISBN 0-671-47685-8. PMC 10726726. (Noiz kontsultatua: 2021-11-09).

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search